A GENTLE
INTRODUCTION
TO LABELS

ENTERPRISE DYNAMICS

Simulation Software

Version 8

Incantrol Simulation Software B.V
Copyright © 1997 - 2009 All Rights Reserved

Simulation Software / TUTORIAL

Enterprise Dynamiés

Copyright © 2010 Incontrol Simulation Software BAI rights reserved
Papendorpseweg 77, 3528 BJ Utrecht, The Netherlands " 'a“ ‘ 0 N T R O L
|

www.lncontr ol Sim.com
Simulation Solutions

A GENTLE INTRODUCTION TO LABELS

1.1 Introduction

Labels can be very useful when you start buildinggercomplex models in Enterprise Dy-
namics (ED)Labelsare tags that can be attached to products in tteeinThey can repre-
sent properties such as color, weight, a bar ceelejce time and many other things. For
instance, you could build a model where every pcodarries a label namegeight. Be-
sides a name, a label also has a value, whichittaer e a number or a string. The value of
the weight label on a particular product might be the numhdt, representing a weight of
14kg. Another product may also carry a laleight, but with value 16, for 16kg. It is pos-
sible for a product to carry multiple labels and tumber of labels can differ per product.

In many modeling situations labels are used tamdjatsh between product types, assigning
them a different service time or a different rotht®ugh the system. Consider for example a
model of the queues at the check in desk of ainpbwtre a distinction is made between
economy travelers and business travelers that hewvess to different check-in desks. To
model this, every passenger (product) is assigriadedaType. The value of this label could
be either "Business’ or "Economy’, though in readaling it's often more convenient to
use number values such as 1 for business andezdoiomy. Based on the value of the label
the traveler will be send to an appropriate queue.

Another application for labels is to keep trackhddtorical information about a product as it
passes through the model. In an airport setting roigdt use a labeCheckinFinished to
store the time at which the passenger left thelclhrecesk. Later on this information can
then be used to compute lead times: how long doake business passengers to clear the
check in desk, how long does it take them to rehelgate, etc.

1.2 Triggers

To use labels you first need to be able to assigmtto products. This assignment takes
place at a specific moment or place in the modaelinfstance when the product enters a cer-
tain queue. This is arranged by settinggers Besides settings such as the cycle time of
server or the capacity of a queue most atoms dfso tagger fields. The most import trig-
gers arelrigger on entryandTrigger on exit These fields are triggered if a product enters or
exits the atom. You can set a 4DScript commandssiga the action that should be per-
formed when the field is triggered.

Exercise 1: Triggers

Build a Source — Queue 1- Server — Queue 2 — Ser$ank model as depicted in figure 1.
You only have to connect the atoms correctly. npisichents have to be made to the set-
tings of the individual atoms.

o
@, 9
Util: 88.0 %

Util: 84.5 %

Figure 1. Model of a serial production line, with two machines separ ated by buffers.

A gentle introduction to labels ©Incontrol Simulation Solutions 2

Labels are one way to assign user-defined progei@roduct atoms, but all product atoms
already have a property ‘Ilcon’. This property iedigo visualized the product in the 2D
window. You can view this property in the user ifdee of a product atom. Double click on
the product atom and go to the Visualization tabulde-click the field ‘2D Icon’. A win-
dow will appear, in which you can select an icohafige the icon and run the model. You
will see products with the new icon flow througle timodel.

You can also change the icon of an individual pob@giom during the simulation run. For
example you can write a 4DScript command that chartge icon of a product when it
leaves to first queue. To do so, write the follogviDScript command in the ‘Trigger on
exit’ field of the first Queue:

Icon(i) := lconByName([circlered])

You can type this in yourself or you can open teedf the ‘Trigger on exit’ field and select
the predefined logic:

Icon(i) := lconByName([?])

You now only have to change the question mark orie of the names of the available
icons. The icons can be found in the Resource Manabich can be open from the main
menu <Window | Resource Manager>. You can alsoyadd own icons to the Resource
Manager.

If you now run the model, you will see that the qurots are blue, but turned red after leav-
ing the first queue.

1.3 Routing products

Besides using the trigger to change the icon abduyxt you can also use it to assign a label
to the product. Having assigned a label to a progog can read it anywhere in the model
and make different decisions based on the valubeofabel. For instance, you could send
products to different queues or servers.

Exercise 2: Labels, predefined logic 7 Label direct
Build a model with two sources, which both sendrtheoducts to the same queue. From the

gueue products can go to either one of two convédis. They then leave the model
through a sink, see figure 2.

Figure 2: M odel with two product typeswhich are separated at the queue by label direct.

Make sure that the products connected to the sswa visualized by different icons by
double-click the icon and go to the visualizatiah.tDouble-click on the 2-D icon field and

A gentle introduction to labels ©Incontrol Simulation Solutions 3

select a different icon. In the example we usedctietered icon. If you now run the model,
you will see both blue and red products in the gueu

We could separate these products again, suchh@dtlie products go to the first conveyor
and the red products to the second. Therefore Wentrioduce a label nametype which

we will assign to all products. For the blue prasdueve will set the value of the label to 1
and for the red products to 2. We will assign tHabels and set the value on the Source at-
oms. The moment a Source creates a produclilyger on creations executed. We can
write a command on this trigger, which states wdmdion should be performed when the
product is created. In this case, we would likagsign a label to the newly created product
and set its value. For this action, we can useobtige predefined logics. Open the listbox of
theTrigger on creatiomf one of the source atoms and choose the folipvagic:

1. Assign label: products are assigned a label named LabelName with a value of 1

In a predefined logic the blue text can be changedthe assign label logic we can change
the name of the label and change the value. On $othice atoms we will chandgeabel-
Nameto Type. On the first Source we will leave the valuelidout on the second we will
change the value &

All products that are created, will now be assigaddbel namedype. We can read this la-
bel anywhere in the model. Since we would likedgpasate products in the queue and send
them to different conveyors will do this on the gqaeThe ‘Send to’ property of an atom de-
termines to which atom a product atom should gd.rethis field contains the value 1 then
all products will be sent to output channel 1.hi field contains the value 2 then all prod-
ucts will be sent to output channel 2. In our madkeproducts have a label named type. The
value of this label is 1 for the blue products @nidbr the red products. If we read the value
of the label in the ‘Send to’ field, then the blu®ducts will go to the first conveyor and the
red to the second. Note that there is a directespondence between the value of the label
and a number of the output channel of the queuvatdd like to send it through. We can
again use a predefined logic to read out the label.

In the * Sent to’ field of the Queue select thddwaling logic:

7. By label value (direct): Use the value stored in the Label named LabelName and send to the
corresponding channel.

We only have to change th@belNameto Type such that the correct label is read. There
could be more than one label assigned to the ptedinerefore you should always state the
name of the label.

After you've made all the changes to the modelthenmodel and check that all blue prod-
ucts go to the first conveyor belt and a red gthéosecond.
Selecting

Exercise 3: Labels, predefined logic 8 Label conditional

We could also do it the other way around: if theugaof the labellype is 1 we will send it

to channel 2 and if the value is 2 will send itcttannel 1. Reading out the label now isn't
enough any more, but we can state a conditiongaterthis behavior. If the value of the la-
bel Type is smaller than 2, which is only true foype 1 products, we send the product to
output channel 2, otherwise it isTgpe 2 product and we sent it to output channel 1.

A gentle introduction to labels ©Incontrol Simulation Solutions 4

You only need to make a minor change to the previowdel to create this behavior.
Change the ‘Send to’ field of the Queue. Choosddhewing predefined logic:

8. By label value (conditional): if the value stored in the label named LabelName is < than 1
then send to channel 1 else 2.

Change the blue text, such that the blype 1 products go to channel 2 end the Tgpe 2
products go to channel 1. After you've made thengba check that the red products go to
the first conveyor and the blue to the secondfigeee 3.

Figure 3: Blue Type 1 products ar e sent to the second output channel of the queue by label conditional.

1.4 Bernoulli distribution

In all previous exercises we used two Source atonecseate the product types. We can also
use one Source to create both. All products wilbbsigned a label namdgpe, but for a
certain percentage the value of the label will éetg 1, and otherwise to 2. For this we need
a Bernoulli distribution. This is a discrete prolbi#yp distribution, which takes two values.
The 4DScript function for this distribution takdgde parameter®&ernoulli(el,e2,e3)

For el percent of the cases the function takesdhe e2 otherwise it will take the value e3.
If we for example execute the expressiamoulli(40,6,10) then in 40% of the cases the
return value will be a 6 and in 60% of the casé6.a

Exercise 4. Bernoulli

Build a model such as depicted in figure 4. SelleetAssign Label predefined logic on the
‘Trigger on creation’ of the Source. Change thedlblame and change the valueBi®-
noulli(80,1,2) . You should now have the following logic:

1. Assign label: products are assigned a label named Type with a value of Bernoulli(80,1,2)

Every time a product is created a label namggk is assigned to it. For most of the prod-
ucts (80%) the value of the label will be set t@idd for the others (20%) it will be set to 2.

To be able to distinguish the two product typeghe 2-D window, write the following
command on the ‘Trigger on exit’ of the Source:

If(Label([Type], 1) = 2, Icon(i) := 26)

This command checks if the label namBgbe of the product that is leaving the Source is
equal to 2 and if so changes the icon of this pcbtuicon number 26. After this change the
‘Send to’ field of the Queue such thRgpe 1 products go to output channel 1 afygbe 2
products to channel 2. The name of the label shbalthe same name as the name of the
label that we assigned to the products on the $o&en the model and check the results.

A gentle introduction to labels ©Incontrol Simulation Solutions 5

L
Out 4672 0

Figure 4: A source creating two product types which are distributed to 2 different conveyors.

In this exercise, we only needed to distinguish praducts types and we could use the Ber-
noulli distribution to set the value of the labiékthere is a need to distinguish more products
than one could use an Empirical Distribution atdsse this atom to create your own dis-
crete probability distribution.

15 4DScript and Labels

Behind each of the predefined logics is a 4DSagmhmand. If you start to build models for
real applications you will find that you cannot louthese models using predefined logic
alone. You will need some basic knowledge of thé&diipt language to be able to build
these models. Therefore will now take a better labkhe code behind the logics of section
1.3.

Before we can start looking at the 4DScript codefinst need to know a little bit about
‘atom references’. Properties and labels belongptxific atoms. If for example, we would
like to assign a label or read a label of an atameed to make clear which atom we mean.
For this we use ‘atom references’. The most comgnoséd atom references are ‘i’ and ‘C’.
If you have a 4DScript command on the ‘Trigger org of the Queue, then you can use
the reference ‘c’ to refer to the Queue itself. Yoould use this if the moment of product
enters a Queue you would like to change the prpmdnthis Queue. The ‘c’ stands four-
rentand refers to the atom on which the command igemnr

Another useful atom reference is ‘i'. This referens frequently used in trigger fields. The
‘" stands forinvolved and refers to the atom that caused the triggeréaute. If you write a
command with both ‘i" and ‘c’ on the ‘Trigger oneation’ of the Source, then ‘c’ refers to
the Source and ‘i’ refers to the product that west greated and which caused the trigger to
be executed. But if you use ‘i’ and ‘c’ in a commdaon the ‘Trigger on exit’ of a Server,
then the ‘c’ refers to the Server and the ‘i’ refén the product that just left the Server and
which caused the trigger to be executed.

Let's examine the code behind to predefined logissign label’, which we used on the
‘Trigger on creation’ of the Source. Open the usé&grface of the Source, open the listbox
of the ‘Trigger on creation’ and select the ‘Assitabel’ logic. To view and edit the
4DScript code of this predefined logic press theasg button below the button to open the
listbox. If you press this button the following @will appear:

Trigger on creation of the Source: Label([Type], i) := 2

Explanation: Each time a product is created thidecis executed. In this example a label
namedType is assigned to the product that has just beenextgeé#te ‘I’ will refer to that
product atom. The sign “:=’ is used to assign thki® 2 to the label.

You can also write a 4DScript expression that tesnlthe value to a label. An example of
that is the following:

Trigger on creation of the SourceLabel([Type], i) := Bernoulli(80,1,2)

A gentle introduction to labels ©Incontrol Simulation Solutions 6

Explanation: Each time a product is created thdeds executed. When the Bernoulli func-
tion is executed it returns a value, which in 80P4he cases will be 1 and in 20% of the
cases will be at 2. This value will be assigneth® labelType on the product that has just
been created.

Anywhere in the model this product goes we can ydweaad out its label. We could for ex-
ample write a command in a ‘Cycletime’ field, sutiat different product types will have

different cycle times or we could write a commamdtioe ‘Send to’ field of an atom to con-

trol the routing of different products types. To dae to do this we need to know how to
read the value of a label and how to use the result

Earlier, we already saw an example on the ‘Triggeexit’ of the Source:
If(Label([Type], i) = 2, Icon(i) := 26)

The 4DScript command:abel([Type], i) returns the value of the labEype on atom

‘i'. Since this code is executed at the momentapct atom leaves the Source, the ‘i’ will
refer to the leaving product. In our example, tbeim value will either be a 1 or a 2. This
value will be compared with the value 2. If theusabf the label is 1 then the comparison is
false and nothing will happen. If the value of takel is 2 then the comparison is true, and
the commandcon(i) := 26 will be executed. This command will change the iocbn
the product leaving the Source to 26.

We also used the lab&lpe in the ‘Send to’ field of the Queue, such thgpe 1 products
go through output channel 1 and type 2 productgmgh output channel 2. In a ‘Send to’
field the result of a 4DScript expression shouldheenumber of the output channel through
which you want to send the product. If you writ@ @& this field, then all products will be
sent through output channel 2. In the examplepraltiucts of which the value of the label
Type was equal to 1, i.€lype 1 products, were send through output channel 4,ifathe
value was equal to 2 it should be send throughutipannel 2.

Send to of the Queukabel([Type], First(c))

Explanation: This command returns the value ofl#bel namedlype of the product atom
‘First(c)’. ‘First(c)’ is just like ‘I" and ‘c’, anatom reference. There can be more than one
product atom in the queue, thus we have to make that we read the label of the product
that is first in queue. Here, we cannot use theresice ‘i’ because the first product in the
gueue is not the product that triggered this fiflgou need to refer to a product atom from
a field which is not a trigger field you can malseof the relative atom references ‘First(c)’
and ‘Last(c)’. The ‘c’ again refers to the curratdm on which the code is written. ‘First(c)’
and ‘Last(c)’ refer respectively to the first aradtl product that is contained in the atom ‘c’.
If only one product is contained in the currentnatiien both ‘First(c)’ and ‘Last(c)’ refer to
the same product.

1.6 Example model: Bank

Customer waiting times are regarded as one of thet oritical aspects of service quality. At
a consumer bank they therefore want to investitieeavaiting time performance of two al-
ternative concepts for serving their customersth&tbank they distinguish several customer

types.

A gentle introduction to labels ©Incontrol Simulation Solutions 7

For simplicity they assume there are two custoyeed, each with different service times.
On average 50 customers per hour arrive at the hathka service time of 1 minute. We
will indicate these customers as type A customaraddition, on average another 5 type B
customers arrive, with a service time of 10 minufétere is one single queue for both cus-
tomer types, serviced by two counters accordinthéo‘first come, first served’ principle.
Furthermore, we assume that all arrival processe®xponentially distributed and that all
service times are constant.

First build the model with a single Queue.

Figure5: Model of the bank with two customer types.

To distinguish the customers in the simulation noiype A customers are represented with
a blue icon and type B customers with a red one.

The time needed for a bank teller to serve a custdras to be known on the servers. This
service time, however, depends on the customer ¥Wygecan solve this problem by using
labels. The idea is to determine the service titrenaearly stage and store this time, in a la-
bel on the customer. In the server we only haveeda the label, we do not have to check
for the customer type. This approach can easigxvended for three or more customers.

Write code on the ‘Trigger on creation’ of the sms to attach a label namsslvicetime on
each of the customers. The value of the label isscs¢he correct service time. In both
Sources select the following predefined logic:

1. Assign label: products are assigned a label named LabelName with a value of 1

Change the name LabelName on both Sourcearticetime and set the value to the service
time. For the Source that creates the type A custeitme value should be 60 (1 minute) and
600 (10 minutes) for type B customers. Recall thaED times should always be given in

seconds.

We should now make sure that the cycletime fieldthe Servers are set to read the label
servicetime and thus use the value stored in the label ascsetvne. Select the following
predefined logic in the cycletime field on the Sas/

Label(] Labelname], First(c))

and change the LabelName irgavicetime. The 4DScript commanHrst(c) is just like

‘I and ‘c’ an atom reference. The ‘c’ refers indlsetting to the servekirst(c) Is a rela-
tive atom reference which refers to the first piida the server. The label on the product
tells us how long the cycle time should take.

A gentle introduction to labels ©Incontrol Simulation Solutions 8

Run the model for several hours and use the sumreport to check if the service time is
as expected.

1.7 Determining lead times

Exercise 5: Using labelsto determinethelead times
In this exercise we will determine the lead timetigh part of a production line. Build a
simple model with two serial servers, with queue®i® both of the servers, see figure 6.

Figure 6: M odel of a serial production line with two machines separ ated by buffersand a Data Recorder
to measur e the lead times.

We will measure the lead time, starting at the tiheg products enter the second queue until
they are processed by the second machine. On tiggér on entry’ of the second queue,
attach a labeEntryTime to each of the passing products and set the ualdéme. The
4DScript commandime gives the current time in the simulation modes@tonds. We can
assign a label to each of the passing producthanTrigger on entry’ with the 4DScript
code

Label(| LabelName], i) := value

The ‘Trigger on entry’ will be executed the momenproduct enters the queuéme re-
turns the current time in the simulation modeltHis case, it will thus return the time that
the product entered to queue. This is the valuevarg to assign to the label.

We also add a Data Recorder, which can be foutigeifResults section of the library, to the
model, which we place behind the second serverrégimducts leave the model through
the sink. A Data Recorder atom can be used to detata of passing products in a table. We
would like to record the lead of the passing prasllitherefore we need to measure the time
starting when products enter the second queuethetilarrive in the Data Recorder.

Double click on the Data Recorder and go to thaaldes tab. Add a variable Throughput
with the following 4DScript expression: Time — Label([EntryTime], i)

Again, Time will return the current time in the simulation nebdIn this situation, it will
thus return the time that the product enters th@ Bacorder.

The next step is to draw a graph of the lead tirbeag a graph atom from the library in the
model and connect its input channel to the cemtnahnel of the Data Recorder. Double-
click on the graph atom and go to the Specific @bange the Value taell(gp, 1,

A gentle introduction to labels ©Incontrol Simulation Solutions 9

in(1,c)) . This code reads the values from column 1 of thketeonnected to the first input
channel of the graph in this case the Data RecoRieset the model and run it for several
hours. Right click to graph atom to view the graplhe lead times. It is also possible to use
the Data Recorder to export the data to excel aadlxcel to make a graph of the lead
times.

A gentle introduction to labels ©Incontrol Simulation Solutions 10

